import pandas as pd
census.xlsx 파일 열기
df = pd.read_excel('census.xlsx')
df.head()
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income |
|---|
| 0 | 39 | State-gov | 77516 | Bachelors | 13 | Never-married | Adm-clerical | Not-in-family | White | Male | 2174 | 0 | 40 | United-States | <=50K |
|---|
| 1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
|---|
| 2 | 38 | Private | 215646 | HS-grad | 9 | Divorced | Handlers-cleaners | Not-in-family | White | Male | 0 | 0 | 40 | United-States | <=50K |
|---|
| 3 | 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
|---|
| 4 | 28 | Private | 338409 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Wife | Black | Female | 0 | 0 | 40 | Cuba | <=50K |
|---|
소득 수준에 따라 그룹짓기
g1 = df.groupby('income')
그룹 보기
g1.groups
{'<=50K': Int64Index([ 0, 1, 2, 3, 4, 5, 6, 12, 13,
15,
...
32548, 32549, 32550, 32551, 32552, 32553, 32555, 32556, 32558,
32559],
dtype='int64', length=24720),
'>50K': Int64Index([ 7, 8, 9, 10, 11, 14, 19, 20, 25,
27,
...
32530, 32532, 32533, 32536, 32538, 32539, 32545, 32554, 32557,
32560],
dtype='int64', length=7841)}
특정 그룹만 보기
g1.get_group('>50K').head()
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income |
|---|
| 7 | 52 | Self-emp-not-inc | 209642 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 45 | United-States | >50K |
|---|
| 8 | 31 | Private | 45781 | Masters | 14 | Never-married | Prof-specialty | Not-in-family | White | Female | 14084 | 0 | 50 | United-States | >50K |
|---|
| 9 | 42 | Private | 159449 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 5178 | 0 | 40 | United-States | >50K |
|---|
| 10 | 37 | Private | 280464 | Some-college | 10 | Married-civ-spouse | Exec-managerial | Husband | Black | Male | 0 | 0 | 80 | United-States | >50K |
|---|
| 11 | 30 | State-gov | 141297 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Husband | Asian-Pac-Islander | Male | 0 | 0 | 40 | India | >50K |
|---|
그룹별 통계
import numpy as np
df['education_num'].mean()
10.0806793403151
g1['education_num'].mean()
income
<=50K 9.595065
>50K 11.611657
Name: education_num, dtype: float64
g1['education_num'].describe()
| count | mean | std | min | 25% | 50% | 75% | max |
|---|
| income | | | | | | | | |
|---|
| <=50K | 24720.0 | 9.595065 | 2.436147 | 1.0 | 9.0 | 9.0 | 10.0 | 16.0 |
|---|
| >50K | 7841.0 | 11.611657 | 2.385129 | 2.0 | 10.0 | 12.0 | 13.0 | 16.0 |
|---|
nth
g1['capital_gain'].nth(0)
income
<=50K 2174
>50K 0
Name: capital_gain, dtype: int64
g1['capital_gain'].nth(-1)
income
<=50K 0
>50K 15024
Name: capital_gain, dtype: int64
agg
aggregate: 모으다(모아서 정리하다)
g1.agg({'education_num': np.mean})
| education_num |
|---|
| income | |
|---|
| <=50K | 9.595065 |
|---|
| >50K | 11.611657 |
|---|
그룹별 education_num 평균과 표준편차
g1.agg({'education_num': [np.mean, np.std]})
| education_num |
|---|
| mean | std |
|---|
| income | | |
|---|
| <=50K | 9.595065 | 2.436147 |
|---|
| >50K | 11.611657 | 2.385129 |
|---|
그룹별 capital_gain 평균
g1.agg({'capital_gain': np.mean})
| capital_gain |
|---|
| income | |
|---|
| <=50K | 148.752468 |
|---|
| >50K | 4006.142456 |
|---|
모두 적용
g1.agg(
{
'education_num': [np.mean, np.std],
'capital_gain': np.mean
}
)
| education_num | capital_gain |
|---|
| mean | std | mean |
|---|
| income | | | |
|---|
| <=50K | 9.595065 | 2.436147 | 148.752468 |
|---|
| >50K | 11.611657 | 2.385129 | 4006.142456 |
|---|
실습
성별(sex)에 따라 education_num의 평균(np.mean)과 표준편차(np.std)를 구하세요.
SELECT AVG(eduation_num), STD(education_num) FROM df GROUP BY sex;
df.groupby('sex').agg({'education_num': [np.mean, np.std]})
| education_num |
|---|
| mean | std |
|---|
| sex | | |
|---|
| Female | 10.035744 | 2.379954 |
|---|
| Male | 10.102891 | 2.662630 |
|---|
race와 income으로 그룹
g2 = df.groupby(['race', 'income'])
rie = g2.agg({'education_num': np.mean})
rie.to_excel('rie.xlsx')
rie
| | education_num |
|---|
| race | income | |
|---|
| Amer-Indian-Eskimo | <=50K | 9.061818 |
|---|
| >50K | 11.222222 |
|---|
| Asian-Pac-Islander | <=50K | 10.440367 |
|---|
| >50K | 12.398551 |
|---|
| Black | <=50K | 9.261235 |
|---|
| >50K | 11.077519 |
|---|
| Other | <=50K | 8.560976 |
|---|
| >50K | 11.600000 |
|---|
| White | <=50K | 9.627422 |
|---|
| >50K | 11.612196 |
|---|
reset_index
rie.reset_index()
| race | income | education_num |
|---|
| 0 | Amer-Indian-Eskimo | <=50K | 9.061818 |
|---|
| 1 | Amer-Indian-Eskimo | >50K | 11.222222 |
|---|
| 2 | Asian-Pac-Islander | <=50K | 10.440367 |
|---|
| 3 | Asian-Pac-Islander | >50K | 12.398551 |
|---|
| 4 | Black | <=50K | 9.261235 |
|---|
| 5 | Black | >50K | 11.077519 |
|---|
| 6 | Other | <=50K | 8.560976 |
|---|
| 7 | Other | >50K | 11.600000 |
|---|
| 8 | White | <=50K | 9.627422 |
|---|
| 9 | White | >50K | 11.612196 |
|---|
unique
컬럼에 포함된 값의 종류를 알려준다.
df['race'].unique()
array(['White', 'Black', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo',
'Other'], dtype=object)
category
범주형 데이터의 경우 기본적으로 object 형으로 되어 있으나 pandas의 category 형으로 변환하면 메모리를 절약하고 속도를 높일 수 있다.
df['age'].dtype
dtype('int64')
df['age'].memory_usage()
260568
df['age'].astype('int16').memory_usage()
65202
df['race'].dtype
dtype('O')
df['race'].memory_usage()
260616
race = df['race'].astype('category')
race.dtype
CategoricalDtype(categories=['Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other',
'White'],
ordered=False)
race.memory_usage()
32889