import pandas as pd
엑셀 파일 열기
df = pd.read_excel('census.xlsx')
첫 부분 보기
df.head()
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income |
|---|
| 0 | 39 | State-gov | 77516 | Bachelors | 13 | Never-married | Adm-clerical | Not-in-family | White | Male | 2174 | 0 | 40 | United-States | <=50K |
|---|
| 1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
|---|
| 2 | 38 | Private | 215646 | HS-grad | 9 | Divorced | Handlers-cleaners | Not-in-family | White | Male | 0 | 0 | 40 | United-States | <=50K |
|---|
| 3 | 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
|---|
| 4 | 28 | Private | 338409 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Wife | Black | Female | 0 | 0 | 40 | Cuba | <=50K |
|---|
csv로 저장, 엑셀로 저장
csv 열기
컬럼 이름
df.columns
Index(['age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'sex',
'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
'income'],
dtype='object')
컬럼 선택
df['age']
0 39
1 50
2 38
..
32558 58
32559 22
32560 52
Name: age, Length: 32561, dtype: int64
dtypes와 dtype
df.dtypes
age int64
workclass object
fnlwgt int64
...
hours_per_week int64
native_country object
income object
Length: 15, dtype: object
df['age'].dtype
dtype('int64')
배열로 변환
df['age'].to_numpy()
array([39, 50, 38, ..., 58, 22, 52], dtype=int64)
통계 계산
import numpy as np
np.max(df['age'])
90
df['age'].max()
90
2019 - df['age']
0 1980
1 1969
2 1981
...
32558 1961
32559 1997
32560 1967
Name: age, Length: 32561, dtype: int64
여러 컬럼에 계산
cols = ['age', 'education_num']
df[cols].head()
| age | education_num |
|---|
| 0 | 39 | 13 |
|---|
| 1 | 50 | 13 |
|---|
| 2 | 38 | 9 |
|---|
| 3 | 53 | 7 |
|---|
| 4 | 28 | 13 |
|---|
df[cols].max()
age 90
education_num 16
dtype: int64
df[cols].agg(np.max)
age 90
education_num 16
dtype: int64
정렬
df.sort_values('age').head()
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income |
|---|
| 12318 | 17 | Private | 127366 | 11th | 7 | Never-married | Sales | Own-child | White | Female | 0 | 0 | 8 | United-States | <=50K |
|---|
| 6312 | 17 | Private | 132755 | 11th | 7 | Never-married | Sales | Own-child | White | Male | 0 | 0 | 15 | United-States | <=50K |
|---|
| 30927 | 17 | Private | 108470 | 11th | 7 | Never-married | Other-service | Own-child | Black | Male | 0 | 0 | 17 | United-States | <=50K |
|---|
| 12787 | 17 | Local-gov | 308901 | 11th | 7 | Never-married | Adm-clerical | Own-child | White | Female | 0 | 0 | 15 | United-States | <=50K |
|---|
| 25755 | 17 | ? | 47407 | 11th | 7 | Never-married | ? | Own-child | White | Male | 0 | 0 | 10 | United-States | <=50K |
|---|
df.sort_values('age', ascending=False).head()
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income |
|---|
| 5406 | 90 | Private | 51744 | Masters | 14 | Never-married | Exec-managerial | Not-in-family | Black | Male | 0 | 0 | 50 | United-States | >50K |
|---|
| 6624 | 90 | Private | 313986 | 11th | 7 | Married-civ-spouse | Craft-repair | Husband | White | Male | 0 | 0 | 40 | United-States | <=50K |
|---|
| 20610 | 90 | Private | 206667 | Masters | 14 | Married-civ-spouse | Prof-specialty | Wife | White | Female | 0 | 0 | 40 | United-States | >50K |
|---|
| 1040 | 90 | Private | 137018 | HS-grad | 9 | Never-married | Other-service | Not-in-family | White | Female | 0 | 0 | 40 | United-States | <=50K |
|---|
| 1935 | 90 | Private | 221832 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 45 | United-States | <=50K |
|---|
쿼리
df.query('age < 18 and capital_gain > 1000')
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income |
|---|
| 106 | 17 | ? | 304873 | 10th | 6 | Never-married | ? | Own-child | White | Female | 34095 | 0 | 32 | United-States | <=50K |
|---|
| 271 | 17 | Private | 191260 | 9th | 5 | Never-married | Other-service | Own-child | White | Male | 1055 | 0 | 24 | United-States | <=50K |
|---|
| 421 | 17 | Private | 175024 | 11th | 7 | Never-married | Handlers-cleaners | Own-child | White | Male | 2176 | 0 | 18 | United-States | <=50K |
|---|
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
|---|
| 1691 | 17 | Private | 103851 | 11th | 7 | Never-married | Adm-clerical | Own-child | White | Female | 1055 | 0 | 20 | United-States | <=50K |
|---|
| 3605 | 17 | Private | 130125 | 10th | 6 | Never-married | Other-service | Own-child | Amer-Indian-Eskimo | Female | 1055 | 0 | 20 | United-States | <=50K |
|---|
| 27889 | 17 | Private | 56536 | 11th | 7 | Never-married | Sales | Own-child | White | Female | 1055 | 0 | 18 | India | <=50K |
|---|
7 rows × 15 columns
그룹
df.groupby('income').agg({'education_num': np.mean})
| education_num |
|---|
| income | |
|---|
| <=50K | 9.595065 |
|---|
| >50K | 11.611657 |
|---|
상자-수염 그림
import seaborn as sns
sns.boxplot(x="income", y="education_num", data=df)
<matplotlib.axes._subplots.AxesSubplot at 0x218f61f7978>