순차적 API
import tensorflow as tf
순차적 API
model = tf.keras.Sequential([
tf.keras.layers.Dense(2, input_shape=(2,), activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.summary()
Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_2 (Dense) (None, 2) 6 _________________________________________________________________ dense_3 (Dense) (None, 1) 3 ================================================================= Total params: 9 Trainable params: 9 Non-trainable params: 0 _________________________________________________________________
x = tf.convert_to_tensor([[1.0, 2.0]])
model(x)
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.5]], dtype=float32)>
모형의 입력 형식을 설정하지 않는 경우
model = tf.keras.Sequential([
tf.keras.layers.Dense(2, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
모형에 데이터를 입력하면, 입력한 데이터에 맞게 입력 형식이 정해진다.
model(x)
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.18382496]], dtype=float32)>
model.summary()
Model: "sequential_2" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_4 (Dense) (1, 2) 6 _________________________________________________________________ dense_5 (Dense) (1, 1) 3 ================================================================= Total params: 9 Trainable params: 9 Non-trainable params: 0 _________________________________________________________________
model.add로 레이어 추가하기
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(2, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model(x)
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.42741257]], dtype=float32)>
model.summary()
Model: "sequential_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_6 (Dense) (1, 2) 6 _________________________________________________________________ dense_7 (Dense) (1, 1) 3 ================================================================= Total params: 9 Trainable params: 9 Non-trainable params: 0 _________________________________________________________________